
UTRECHT UNIVERSITY

Artificial Intelligence

Bachelor Thesis Artificial Intelligence

Enhancing Gaming Experience: Image Outpainting

Applied to Asynchronous Reprojection

First examiner:

Peter Vangorp

Second examiner:

Yupei Du

Candidate:

Tsjerk Piter Walinga

0962414

February 1, 2024

Abstract

This study introduces a novel approach that combines asynchronous re-

projection and image outpainting to accelerate game rendering. The lit-

erature review outlines prevalent AI-based techniques, leading to the pro-

posed method. In implementation, we detail the process of using the cur-

rent frame for outpainting, generating expanded images, and employing

asynchronous reprojection. Testing reveals that this combination maintains

superior temporal cohesion compared to baseline and an alternative. Execu-

tion time assessments suggest potential for further optimization. The results

demonstrate the potential effectiveness of the proposed method in enhanc-

ing game rendering performance. Considerations for future optimization

and other possible techniques are discussed.

2

Contents

1 Introduction 4

1.1 Research question . 4

2 Literature 5

2.1 AI based rendering acceleration techniques 5

2.2 Asynchronous Reprojection . 6

2.3 Outpainting . 8

2.4 Combination of asynchronous reprojection and Outpainting . 9

3 Method 10

3.1 Implementation . 10

3.2 The proof of concept . 11

4 Results 13

4.1 Testing . 13

4.2 Examples . 14

4.3 Quality . 17

4.4 Speed . 19

5 Further Research 20

5.1 Different techniques . 20

5.2 Improving this technique . 20

6 Conclusion 23

Bibliography 26

3

1. Introduction

The increasing demand for realistic game graphics is straining GPU perfor-

mance, making it challenging to achieve playable frame rates. A signifi-

cant issue associated with low frame rates in games is the sluggish sensa-

tion experienced while looking around[1]. Asynchronous reprojection has

emerged as a potential solution, where the act of looking around occurs

independently of game rendering. This reuses the previous frame for the

generation of a new frame by projecting them on the new camera viewport.

This is done in parallel with the normal rendering and shown between fully

rendered frames if the next frame is not ready on time[2]. This technique is

currently mostly used for virtual reality applications. However, this tech-

nique introduces a drawback: missing information, since elements outside

the rendered view cannot be displayed without undergoing rendering. The

objective of this research is to address this information gap by leveraging

existing AI image outpainting techniques and exploring if this avenue of

improving frame rate is worth exploring more. Image outpainting is the

act of expanding the image outwardly. In contrast image inpainting fills in

parts on the inside of an image[3], which is for example used in Photoshop

for removing unwanted objects[4]. Both can be used in slightly different

ways to address this information gap. We chose for outpainting, this deci-

sion is further discussed in chapter 3.

1.1 Research question

Can the integration of AI image outpainting with asynchronous reprojection

contribute to a higher frame rate?

4

2. Literature

There have been a lot of attempts at using AI for speeding up game render-

ing. In this section we will be discussing a few, their trade-offs, the basis of

the techniques we use and how our attempt differs.

2.1 AI based rendering acceleration techniques

2.1.1 Upscaling

By far the most popular AI based technique for speeding up game rendering

has been upscaling, it is now included in most new games and all big graph-

ics card manufacturers have their own version (although not all versions

use AI techniques). For example, DLSS (deep learning super sampling) by

Nvidia is a spatial upscaler that uses motion vectors and the current low

resolution frame to generate a higher resolution output using two convolu-

tional neural networks. One as a preprocessing step for the second which

does the upscaling[5]. Adding an extra layer of processing to the render-

ing does add extra overhead increasing input latency, however in almost all

cases this is canceled out by the faster rendering of the frame itself[6].

2.1.2 Denoising

Denoising, a technique aimed at reducing noise in an image, can be imple-

mented in various ways. The simplest method involves blurring the image,

albeit at the expense of sharpness. Consequently, a multitude of techniques

have been developed, with some leveraging machine learning approaches

as evidenced by studies such as [7] and [8]. Denoising is specifically used for

path-traced or ray-traced rendering because those techniques rely on aver-

aging lots of rays to create smooth looking results. Normally there is a need

for a lot of samples to get rid of the noise in path-traced or ray-traced games.

5

Literature

Denoising allows us to lower the sample count which speeds up the render-

ing.[9] This technique is increasingly prevalent as more games are opting

for ray-traced elements for the rendering[10][11].

2.1.3 Frame Interpolation

Frame interpolation is a technique used in computer graphics and video

processing that aims to improve visual experiences by generating inter-

mediary frames between existing ones, instead of focusing on making the

frames easier to render[12]. This method enhances the frame rate of the

game by generating complete frames in between fully rendered frames.

Frame interpolation involves algorithms that analyze existing frames, ex-

trapolating information to generate intermediary frames. Techniques such

as optical flow-based methods or machine learning-driven approaches are

commonly used for this purpose. For example in DLSS 3.0 which is a ma-

chine learning-driven approach that estimates the frame between the cur-

rent and the prior frame, using both frames, an optical flow field generated

as a preprocessing step and game engine data[13]. Using frame interpola-

tion to increase frame rate does come with a slight downside: The interpo-

lated frame is based on the current and previous frame, which means show-

ing the current frame is delayed so an interpolated frame can be shown in

between. This introduces extra input latency for the user, which is one of

the original benefits of a higher frame rate.

2.2 Asynchronous Reprojection

Asynchronous reprojection has until now almost been exclusively used for

VR purposes. In VR it is essential to maintain a high frame rate, because

low frame rates can lead to motion sickness due to the resulting unrespon-

siveness to the user motion [14]. This is why asynchronous reprojection was

developed, a technique in which frames are inserted between fully rendered

frames by reprojecting the current frame based on the camera movement,

even during high system load. This is done by doing it asynchronously

from the rendering, allowing rotational movement to occur while the next

6

2.2 Asynchronous Reprojection

frame is being rendered. Anynchronous reprojection helps frame drops by

ensuring a high frame rate experienced by the user even while the game is

unable to draw new frames[2].

2.2.1 Making sense of the names

A lot of different companies in the VR space have used different names for

techniques based on asynchronous reprojection, this is our attempt at pro-

viding an overview of them and how they differ.

2.2.1.1 Timewarp

Timewarp is the term used by Meta for describing reprojection that is help-

ing reduce latency. Orientation Timewarp is the term for a variant that only

uses the rotational change in head position to reproject the frame. There are

2 versions an asynchronous and synchronous version, referred to ATW and

STW respectively. Where the asynchronous version is decoupled from the

rendering, the synchronous version always applies it right after a completed

frame [15][16].

2.2.1.2 Asynchronous Spacewarp 1.0

Asynchronous Spacewarp is the term used by Meta for a supplementary

technology to ATW, that tries to extrapolate the character movement, con-

troller movement and the player’s own positional movement. It is intended

to use next to ATW and is often referred to as ASW or ASW 1.0 [17].

2.2.1.3 Positional Timewarp

Also referred to as PTW, a technique used by Meta that leverages depth

information for a sparse-parallax-mapping technique to correct for rotation

and translational movement[16]. Parallax mapping moves parts of an image

at different rates based on their distance, so further objects move less than

close objects, which mimics the effect of actually moving the view.

7

Literature

2.2.1.4 Asynchronous Spacewarp 2.0

A version of ASW that uses PTW instead of ATW. Whenever a game does

not provide depth information ASW 1.0 is used instead[16].

2.2.1.5 Motion Smoothing

Developed by Valve, this technique extrapolates the next frame by estimat-

ing the motion based on the last two frames. Intended as an improvement

upon asynchronous reprojection, it allows for rotational and translational

movement but can in some cases introduce visual artifacts[18].

2.2.1.6 Interleaved reprojection

Used by Valve, this is a fallback for systems that cannot support asynchronous

reprojection. Interleaved reprojection reprojects every other frame using ro-

tation only reprojection. This does the same as STW[19].

2.3 Outpainting

Outpainting, the act of expanding an image outwards, has so far mostly

been used for creative purposes, because there is no single obvious use case.

It has for example been proposed as a way to create 360-degree images for

use in the backgrounds of cgi or games[20] and for creating textures for

3d models [21]. The use of outpainting based on AI has especially risen

since the rise in popularity of generative AI models such as Dall-e 2[22] and

Stable diffusion[23] which also have the ability to outpaint[24][25]. These

recent models employ diffusion-based techniques, tasking the model with

progressively refining noise in small increments. In contrast, many earlier

models relied on Generative Adversarial Networks (GANs). GANs operate

within a machine learning framework where two models, such as an image

generator and a discriminator, compete. For instance, the image generator

aims to deceive the discriminator into believing its generated images are

authentic, facilitating mutual improvement in their respective tasks [26].

There have also been video outpainting developed, however those are

8

2.4 Combination of asynchronous reprojection and Outpainting

not directly applicable to our use case as real-time outpainting is required,

and the subsequent frames are unknown. Consequently, real-time video

outpainting for games is not possible due to not knowing how the next

frames will look. Despite this limitation, insights from video outpainting

techniques, particularly those addressing temporal coherence issues, could

prove valuable for enhancing our proposed technique, given that temporal

cohesion poses a similar challenge in our approach [27].

2.4 Combination of asynchronous reprojection and

Outpainting

The combination of asynchronous reprojection with outpainting is different

from the AI based techniques we have discussed by being able to create ex-

tra frames while the next frame is still being rendered. This means that it

could possibly have a much greater impact on the frame rate compared to

other techniques due to it being based on the asynchronous reprojection;

frame interpolation has only been used for inserting 1 frame in between

fully rendered frames and the other techniques only make the normal ren-

dering faster. Techniques that are based on making the normal rendering

faster like upscaling a lower resolution frame have the drawback of still

having to wait on the rendering, which means that those techniques will

not help anytime a frame takes longer for some reason. The combination of

asynchronous reprojection and outpainting also does not add an extra delay

to the normal rendering like the other techniques, so it should not have an

impact on input latency.

9

3. Method

3.1 Implementation

The implementation of the combination of asynchronous reprojection and

image outpainting is fairly straightforward and does not need any scene

specific information: The current frame is used as input for the image out-

painting method, which then produces an expanded image. This resulting

image is then used for the reprojection and shown if the next fully rendered

frame is not ready yet. This whole process is, as the name implies, done

asynchronously from the normal rendering.

3.1.1 Outpainting strategies

We do still have a decision with differing trade-offs to make here:

• Only outpaint fully rendered images; so, the outpainting is only done

once for every fully rendered frame.

• Also apply the outpainting to the reprojected frames we have inserted

between fully rendered frames (of which thus a part is already out-

painted)

The first approach is faster because the outpainting only has to be done

once and is then reused for subsequent reprojections (until the next fully

rendered frame), this way we could also look back towards the center of

the fully rendered frame and it would reuse the fully rendered frame. This

approach does have a problem: once we look far enough outside of the orig-

inal view there is not enough extra information created by the outpainting

which results in the edge where we are trying to look to not contain any

information, which results (in our implementation) in black. If this were to

occur often it could be quite distracting to the user. The second approach

does not have this problem because it continuously generates more infor-

10

3.2 The proof of concept

mation outside of the known area, however this comes at the cost of per-

formance because the image outpainting has to be applied every time we

would like to reproject the image. With different outpainting techniques

these tradeoffs could look slightly different, for example in a technique that

can outpaint with a mask such that only the part we need is outpainted

the second approach could be better. Conversely, a technique that can out-

paint to an arbitrary size the first approach could be tuned to never have the

problem in real world situations (for example by changing the outpainting

size depending on the mouse movement speed). A hybrid approach that

only expands the outpainting if needed could also be interesting however

this could add extra overhead due to the extra check involved. In our proof

of concept we opted for the first approach mainly due to the speed of the

technique used (see chapter 4 for more information on this).

3.1.2 Inpainting or outpainting

We could also use image inpainting on the frame after the reprojection, then

we would know exactly what has to be filled in. This would in a similar

way as the second approach get rid of the problem of the first approach

discussed in the section above. However preliminary testing on our part

showed unfavorable results, the image inpainting method we tried[28] left

an obvious edge and seemed unable to produce a satisfactory result when

inpainting on the edge of an image.

3.2 The proof of concept

To identify possible roadblocks we made a proof of concept for which we

used the opensource game engine Godot for its extensibility and ease of use.

We found an opensource implementation of asynchronous reprojection for

godot[29]. We only used 3 degrees of freedom reprojection, which means

only rotation is possible between fully rendered frames and no translation.

This is so there is no additional depth information needed for the reprojec-

tion and things that are hidden behind other objects do not become a prob-

lem. We used it on non-vr games for ease of development. As explained in

11

Method

the section above, the approach where outpainting is only applied once be-

tween fully rendered frames was chosen. The utilized outpainting method

processed 128x128 images, extending them to 192x192 as detailed in [30].

For this proof of concept, we constrained the game resolution to 128x128.

However, this fixed resolution is suboptimal for practical games. To address

this limitation, an outpainting method capable of handling arbitrary resolu-

tions or incorporating additional downscaling and upscaling steps should

be implemented. Without such flexibility, users would be confined to the

specified resolution of 128x128. This resolution is significantly lower than

the widely adopted 1920x1080 resolution, identified as the most common

according to a Hardware Survey, where 59.58% of users (at the time of writ-

ing) opted for this resolution [31].

12

4. Results

4.1 Testing

The resulting program was tested for temporal cohesion, how much the in-

painting differs per frame. As testing temporal cohesion provides a measure

of how much flickering there is in the filled in areas and thus how distract-

ing it will be for the user. It was also tested for execution time, specifically

considering if it is less than needed for real time rendered applications (60

frames per second, which is seen as the standard in this context due to most

monitors having a refresh rate of 60hz), as exceeding this threshold would

render it impractical for use in games. We did not test against ground truth

because that only tests how well the outpainting technique performs on im-

ages instead of this specific use case, this is also already done in the paper of

the technique we use. For testing we have taken screenshots from a game,

downscaled them and made a panning image sequence out of it, then on

every image we applied the outpainting. The difference is a value between

0 and 1 that is calculated per pixel, for example the difference between black

(0,0,0) and white (255,255,255) would be 1 and the difference between black

(0,0,0) and red (255,0,0) would be 0.33. This difference is then averaged

over all pixels being compared; so all differences added up and divided by

the number of white pixels in the mask. This difference was calculated be-

tween all subsequent images in the image sequence using the corresponding

mask. This area should – in an ideal scenario – stay the same because the

mask shifts over one pixel to the bottom left and the panning motion move

over one pixel to the top right. It was tested in this way to simulate looking

around in a game. As seen in Figure 4.1, the mask is an L shape that moves

in the opposite direction of the panning motion such that the compared area

should contain the same information in the ideal scenario.

This was done on image sequences of 16 images per scene, which re-

13

Results

Figure 4.1: Three frames of the mask

sulted in 15 differences between the images per scene as shown in Figure 4.5.

This testing was then done on three different techniques for filling in the

borders:

• The outpainting technique

• Random noise, that is different per frame, as a baseline. This was pro-

vides a good baseline because if what we are doing is worse in differ-

ence per frame than random noise it would not make much sense.

• Stretching the last pixel over the sides. This is used as an example of

a simple technique that does not create obvious borders. We did not

stretch it over the corners because there is no single obvious way to do

this, the lack of the corners does mean that the stretching method has

a lower difference result as the corners do not change.

4.2 Examples

To give an idea of how the 3 different techniques look we will provide an

example for each technique on the same scene – Figure 4.2, Figure 4.3 and

Figure 4.4 – These show two subsequent images of the sequence we tested

on with the three techniques discussed above.

14

4.2 Examples

Figure 4.2: Two subsequent testing images using the outpainting

Figure 4.3: Two subsequent testing images with the noise method

Figure 4.4: Two subsequent testing images where the last pixel has been
stretched over the sides

15

Results

Figure 4.5: Differences per frame from a test scene using the outpainting

16

4.3 Quality

4.3 Quality

From testing on 11 samples of different scenes in a recent game title (Counter-

Strike 2) the following results were observed:

Scene Outpainting Noise Stretching
0 0.0399 0.2215 0.0569
1 0.0431 0.2231 0.0809
2 0.0635 0.2220 0.1179
3 0.0174 0.2223 0.0273
4 0.1036 0.2212 0.1070
5 0.0459 0.2218 0.0725
6 0.0293 0.2223 0.0535
7 0.0351 0.2220 0.0522
8 0.0484 0.2215 0.0857
9 0.0499 0.2230 0.0743

10 0.1109 0.2228 0.1356
Average 0.0534 0.2221 0.0785

Minimum 0.0090 0.2173 0.0154
Maximum 0.2125 0.2278 0.2267
Variance 0.0014 4.585E-06 0.0015

Table 4.1: Results per different scenes per technique.

Figure 4.6: The differences from all frames plotted

When we average the results shown in Figure 4.6 we get the results

17

Results

shown in Figure 4.7. For an overview of the performance on different scenes

we have included Table 4.1.

Figure 4.7: The consistency of outpainting compared to random noise and
stretching the last pixel to the border

These are the average differences between the masked areas in subse-

quent frames, where lower is better. To make these results more intuitive

you could see them as percentages, e.g. the compared area from the out-

painting technique differed 5.336% on average. As shown the outpainting

technique changes significantly less than the other techniques, even with

the lack of corners on the stretching technique. The lower average differ-

ence would make it less distracting for the user when used in games.

4.3.1 Limitations

There are of course limitations of only testing the difference between frames,

for example if we filled in the outside area with a single color and kept this

the same it would get a perfect score while not giving us the result we want

(because the edge would be obvious and distracting). This is why we opted

to test against random noise as a baseline instead of not filling in anything.

The stretching method was also chosen for this reason, it gives us a simple

technique that does change per frame. The stretching technique also does

not produce an obvious border which makes it even more compelling to

compare against. -

18

4.4 Speed

4.4 Speed

After optimizing the outpainting technique of our choice by removing fea-

tures we did not need for our purpose such as arbitrary size of input im-

ages and re-setting the evaluation mode every time, we tested the speed:

The average of 100 runs was 0.084 seconds on the CPU and 0.014 seconds

when using the GPU for the PyTorch operations. These results translate into

roughly 12 and 71 frames per second respectively. Having the PyTorch op-

erations run on the GPU does mean a faster execution time – in our case an

almost sixfold improvement – although this does mean that it takes up GPU

resources which we want to avoid due to that being the most common bot-

tleneck for modern games. The system we tested on was a Lenovo legion

5 pro 16iah7h laptop running an intel i7 12700H and an RTX 3070TI. The

runs where we got the averages from consisted of making a masked image

of the input, doing the outpainting and blending it with the starting image,

as these steps would need to be done every time a new image is outpainted

in a gaming scenario. The model and starting image were already loaded

in RAM and resulting images were not saved. This is so it better simulates

an in-game scenario in which the model would be pre-loaded during load-

ing times, the starting images in RAM due to rendering and the resulting

images discarded after being shown.

19

5. Further Research

5.1 Different techniques

From the insights gained from our research we got more ideas for different

techniques that could be worth exploring, we will briefly discuss them here.

5.1.1 Upscaling wider lower resolution view

Further research could focus on using existing upscaling techniques (e.g.

FSR[32] or DLSS[5]) to upscale a wider view from a low resolution for use

in filling in the missing information of the re-projection. These techniques

have become a lot faster than real time which would make it possible to in-

sert more frames between fully rendered frames and thus create a smoother

experience.

5.2 Improving this technique

Our proposed technique also leaves a lot to be desired, the temporal coher-

ence could still be improved, currently only the rotational movement of the

player view is smoother, the technique is still too slow to be used in practice

when we are not using the GPU and when the player is looking around too

quickly at a low frame rate he could run into missing information. In this

section we will propose some ways further research can try to fix some of

these remaining problems.

5.2.1 Game specific training

An option for improving our technique would be using game or even scene

specific training to potentially improve the temporal coherence and accu-

20

5.2 Improving this technique

racy of the result. For example by having a model per game level. This

would help by making the model more specific. Training of these models

could be automated by taking random realistic (so from the same points in

space that the player could take) viewpoints. These viewpoints should then

be taken with the field of view the size of what we would like to outpaint to,

and then use these and a cut in version as the training data for our model.

Creating game or scene specific models could add a lot of extra complexity

or at the very least a lot of extra training time to game development so this

might not be ideal.

5.2.2 More degrees of freedom

Extending our technique to 6 degrees of freedom, so including movement

and not only rotation, and using AI inpainting[28] to also fill in the missing

parts behind objects would also be an interesting follow up. One way of do-

ing this is by using the positional timewarp[16] or the motion smoothing[18]

techniques we discussed in chapter 2.

5.2.3 Model made for this purpose

If you were to create an image outpainting model specifically for the pur-

pose of use for asynchronous reprojection you would be able to focus on

speed and making the result as least distracting as possible instead of only

on accuracy as current models do. As discussed previously in chapter 3, a

model with an arbitrary outpainting size could also benefit this technique by

for example extrapolating how fast the player is looking around per frame

to determine the outpainting size needed to never have the player run into

any missing information. Because game engines often create extra informa-

tion such as depth information, this could also be used to generate a more

accurate and/or a more consistent result, just like how DLSS 2.0 uses motion

vectors[5] or how DLSS 3.0 uses the optical flow as a preprocessing step[13].

Adding additional information has already been shown in research in the

past to produce a qualitative improvement in image outpainting[21]. More

information can also improve the temporal coherence of the technique as

21

Further Research

shown in video outpainting techniques [27].

5.2.4 Stretching past the outpainting

An additional step which could be taken to never have the player run into

an obvious border of missing information would be stretching the last pixel

of the outpainted area far enough to fill it in. This would be like the stretch-

ing method we tested against but with the additional benefit of the extra

accuracy and consistency of the outpainting for the first part of the missing

information needed for the asynchronous reprojection. This could be a good

compromise if outpainting farther means less accuracy or a slower result.

22

6. Conclusion

There have been a lot of attempts at using AI to speed up game rendering

such as upscaling, denoising and frame interpolation. In the VR scene there

are lots of different methods such as asynchronous reprojection and similar

techniques for making the experience smoother for the user. We combined

the basic asynchronous reprojection with image outpainting to fill in the

gaps. We have detailed the straightforward process of using the current

frame for outpainting, generating expanded images, and employing asyn-

chronous reprojection for displaying these images during rendering.

Testing focuses on temporal cohesion and execution time. Temporal co-

hesion is evaluated by calculating differences between the outpainting in

subsequent frames, revealing that the outpainting technique used maintains

temporal coherence better than the baseline of random noise and also better

than stretching the last pixel over the border. Execution time was also mea-

sured, indicating further optimisation to be needed for the used technique

to be useful.

This indicates that this might be a new way to make for a better expe-

rience, but further research is needed to make it possible. Multiple ways

in which further research could be done have been discussed and should

provide a good starting point for anyone building upon our research.

So can the integration of AI image outpainting with asynchronous re-

projection contribute to a higher frame rate? Yes, if it becomes fast enough,

it should not be too distracting.

23

Bibliography

[1] M. Claypool, K. Claypool, and F. Damaa, “The effects of frame rate
and resolution on users playing first person shooter games,” Pro-
ceedings of SPIE - The International Society for Optical Engineering,
vol. 6071, Jan. 2006. DOI: 10.1117/12.648609.

[2] Google, Asynchronous reprojection. [Online]. Available: https://dev
elopers.google.com/vr/discover/async-reprojection.

[3] Y.-C. Cheng, C. H. Lin, H.-Y. Lee, J. Ren, S. Tulyakov, and M.-H.
Yang, “In&out: Diverse image outpainting via gan inversion,” vol. abs/2104.00675,
2021.

[4] Adobe, Remove objects from your photos with content-aware fill, Jul.
2023. [Online]. Available: https://helpx.adobe.com/photoshop/
using/content-aware-fill.html.

[5] A. Burnes, Nvidia dlss 2.0: A big leap in ai rendering, Accessed: Jan-
uary 28, 2024, Mar. 2020. [Online]. Available: https://www.nvidia.
com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-
rendering.

[6] H. Unboxed, Does dlss hurt input latency? Accessed: January 27, 2024,
Sep. 2021. [Online]. Available: https://www.youtube.com/watch?
v=osLDDl3HLQQ.

[7] Y.-Q. Wang and J.-M. Morel, “Can a single image denoising neural
network handle all levels of gaussian noise?” IEEE Signal Processing
Letters, vol. 21, no. 9, pp. 1150–1153, 2014. DOI: 10.1109/LSP.2014.
2314613.

[8] B. Liu and S.-i. Kamata, “Combined convolutional neural network
for highly compressed images denoising,” in 2020 Joint 9th Interna-
tional Conference on Informatics, Electronics Vision (ICIEV) and 2020
4th International Conference on Imaging, Vision Pattern Recognition
(icIVPR), 2020, pp. 1–7. DOI: 10.1109/ICIEVicIVPR48672.2020.
9306597.

[9] C. R. A. Chaitanya, A. S. Kaplanyan, C. Schied, et al., “Interactive
reconstruction of monte carlo image sequences using a recurrent
denoising autoencoder,” ACM Trans. Graph., vol. 36, no. 4, Jul. 2017,
ISSN: 0730-0301. DOI: 10.1145/3072959.3073601. [Online]. Avail-
able: https://doi.org/10.1145/3072959.3073601.

[10] J. Roach, “All ray tracing games on pc: Amd radeon and nvidia
rtx ray tracing,” digitaltrends, Oct. 2023, Accessed: January 28, 2024.
[Online]. Available: https://www.digitaltrends.com/computing/
games-support-nvidia-ray-tracing.

[11] A. Burnes, Nvidia dlss 3.5: Enhancing ray tracing with ai; coming this
fall to alan wake 2, cyberpunk 2077: Phantom liberty, portal with rtx

24

https://doi.org/10.1117/12.648609
https://developers.google.com/vr/discover/async-reprojection
https://developers.google.com/vr/discover/async-reprojection
https://helpx.adobe.com/photoshop/using/content-aware-fill.html
https://helpx.adobe.com/photoshop/using/content-aware-fill.html
https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering
https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering
https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering
https://www.youtube.com/watch?v=osLDDl3HLQQ
https://www.youtube.com/watch?v=osLDDl3HLQQ
https://doi.org/10.1109/LSP.2014.2314613
https://doi.org/10.1109/LSP.2014.2314613
https://doi.org/10.1109/ICIEVicIVPR48672.2020.9306597
https://doi.org/10.1109/ICIEVicIVPR48672.2020.9306597
https://doi.org/10.1145/3072959.3073601
https://doi.org/10.1145/3072959.3073601
https://www.digitaltrends.com/computing/games-support-nvidia-ray-tracing
https://www.digitaltrends.com/computing/games-support-nvidia-ray-tracing

Bibliography

more, Accessed: January 28, 2024, Aug. 2023. [Online]. Available:
https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-3-
5-ray-reconstruction/.

[12] A. S. Parihar, D. Varshney, K. Pandya, and A. Aggarwal, “A com-
prehensive survey on video frame interpolation techniques,” The
Visual Computer, vol. 38, no. 1, pp. 295–319, Jan. 2021, ISSN: 1432-
2315. DOI: 10 . 1007 / s00371 - 020 - 02016 - y. [Online]. Available:
http://dx.doi.org/10.1007/s00371-020-02016-y.

[13] H. C. Lin and A. Burnes, Nvidia dlss 3: Ai-powered performance mul-
tiplier boosts frame rates by up to 4x, Accessed: January 27, 2024, Sep.
2020. [Online]. Available: https://www.nvidia.com/en-us/geforc
e/news/dlss3-ai-powered-neural-graphics-innovations.

[14] J. Wang, R. Shi, W. Zheng, W. Xie, D. Kao, and H.-N. Liang, “Effect
of frame rate on user experience, performance, and simulator sick-
ness in virtual reality,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 29, no. 5, pp. 2478–2488, 2023. DOI: 10.1109/
TVCG.2023.3247057.

[15] M. Antonov, Asynchronous timewarp examined, Accessed: January 28,
2024, Mar. 2015. [Online]. Available: https://developer.oculus.
com/blog/asynchronous-timewarp-examined.

[16] D. Beeler and V. Aksoy, Developer guide to asw 2.0, Accessed: January
28, 2024, Aug. 2019. [Online]. Available: https://developer.oculu
s.com/blog/developer-guide-to-asw-20.

[17] E. H. Dean Beeler and P. Pedriana, Asynchronous spacewarp, Accessed:
January 28, 2024, Nov. 2016. [Online]. Available: https://develope
r.oculus.com/blog/asynchronous-spacewarp.

[18] Valve, Introducing steamvr motion smoothing, Accessed: January 28,
2024, Nov. 2018. [Online]. Available: https://steamcommunity.com
/games/250820/announcements/detail/1705071932992003492.

[19] A. Vlachos, “Advanced vr rendering performance,” Accessed: Jan-
uary 28, 2024, Mar. 2016. [Online]. Available: https://alex.vla
chos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_
Performance_GDC2016.pdf.

[20] N. Akimoto, Y. Matsuo, and Y. Aoki, “Diverse plausible 360-degree
image outpainting for efficient 3dcg background creation,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Jun. 2022, pp. 11 441–11 450.

[21] C. Shi, Y. Ren, X. Li, I. Mumtaz, Z. Jin, and H. Ren, “Image out-
painting guided by prior structure information,” Pattern Recogni-
tion Letters, vol. 164, pp. 112–118, 2022, ISSN: 0167-8655. DOI: https:
//doi.org/10.1016/j.patrec.2022.10.030. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/
S0167865522003294.

[22] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, Hierar-
chical text-conditional image generation with clip latents, 2022. arXiv:
2204.06125 [cs.CV].

25

https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-3-5-ray-reconstruction/
https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-3-5-ray-reconstruction/
https://doi.org/10.1007/s00371-020-02016-y
http://dx.doi.org/10.1007/s00371-020-02016-y
https://www.nvidia.com/en-us/geforce/news/dlss3-ai-powered-neural-graphics-innovations
https://www.nvidia.com/en-us/geforce/news/dlss3-ai-powered-neural-graphics-innovations
https://doi.org/10.1109/TVCG.2023.3247057
https://doi.org/10.1109/TVCG.2023.3247057
https://developer.oculus.com/blog/asynchronous-timewarp-examined
https://developer.oculus.com/blog/asynchronous-timewarp-examined
https://developer.oculus.com/blog/developer-guide-to-asw-20
https://developer.oculus.com/blog/developer-guide-to-asw-20
https://developer.oculus.com/blog/asynchronous-spacewarp
https://developer.oculus.com/blog/asynchronous-spacewarp
https://steamcommunity.com/games/250820/announcements/detail/1705071932992003492
https://steamcommunity.com/games/250820/announcements/detail/1705071932992003492
https://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_Performance_GDC2016.pdf
https://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_Performance_GDC2016.pdf
https://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_Performance_GDC2016.pdf
https://doi.org/https://doi.org/10.1016/j.patrec.2022.10.030
https://doi.org/https://doi.org/10.1016/j.patrec.2022.10.030
https://www.sciencedirect.com/science/article/pii/S0167865522003294
https://www.sciencedirect.com/science/article/pii/S0167865522003294
https://arxiv.org/abs/2204.06125

Bibliography

[23] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, High-
resolution image synthesis with latent diffusion models, 2022. arXiv: 211
2.10752 [cs.CV].

[24] OpenAI. “DALL-E: Introducing Outpainting.” Accessed: January
27, 2024. (2022), [Online]. Available: https://openai.com/blog/
dall-e-introducing-outpainting.

[25] AUTOMATIC1111. “Stable-diffusion-webui.” Accessed: January 27,
2024. (2022), [Online]. Available: https://github.com/AUTOMATIC1
111/stable-diffusion-webui.

[26] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta,
and A. A. Bharath, “Generative adversarial networks: An overview,”
IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 53–65, 2018. DOI:
10.1109/MSP.2017.2765202.

[27] L. Dehan, W. Van Ranst, P. Vandewalle, and T. Goedemé, “Com-
plete and temporally consistent video outpainting,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR) Workshops, Jun. 2022, pp. 687–695.

[28] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catanzaro,
Image inpainting for irregular holes using partial convolutions, 2018.
arXiv: 1804.07723 [cs.CV].

[29] Ogilliland, Godot-asynchronous-reprojection, Dec. 2022. [Online]. Avail-
able: https://github.com/ogilliland/godot- asynchronous-
reprojection.

[30] B. V. Hoorick, “Image outpainting and harmonization using genera-
tive adversarial networks,” CoRR, vol. abs/1912.10960, 2019. arXiv:
1912.10960. [Online]. Available: http://arxiv.org/abs/1912.
10960.

[31] “Steam hardware & software survey.” Accessed: January 27, 2024.
(2024), [Online]. Available: https://store.steampowered.com/
hwsurvey/Steam-Hardware-Software-Survey-Welcome-to-Steam.

[32] Kurbeco, Fidelityfx super resolution 2.2.2 (fsr2), Jul. 2023. [Online].
Available: https://github.com/GPUOpen-LibrariesAndSDKs/Fi
delityFX-SDK/blob/main/docs/techniques/super-resolution-
temporal.md.

26

https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://openai.com/blog/dall-e-introducing-outpainting
https://openai.com/blog/dall-e-introducing-outpainting
https://github.com/AUTOMATIC1111/stable-diffusion-webui
https://github.com/AUTOMATIC1111/stable-diffusion-webui
https://doi.org/10.1109/MSP.2017.2765202
https://arxiv.org/abs/1804.07723
https://github.com/ogilliland/godot-asynchronous-reprojection
https://github.com/ogilliland/godot-asynchronous-reprojection
https://arxiv.org/abs/1912.10960
http://arxiv.org/abs/1912.10960
http://arxiv.org/abs/1912.10960
https://store.steampowered.com/hwsurvey/Steam-Hardware-Software-Survey-Welcome-to-Steam
https://store.steampowered.com/hwsurvey/Steam-Hardware-Software-Survey-Welcome-to-Steam
https://github.com/GPUOpen-LibrariesAndSDKs/FidelityFX-SDK/blob/main/docs/techniques/super-resolution-temporal.md
https://github.com/GPUOpen-LibrariesAndSDKs/FidelityFX-SDK/blob/main/docs/techniques/super-resolution-temporal.md
https://github.com/GPUOpen-LibrariesAndSDKs/FidelityFX-SDK/blob/main/docs/techniques/super-resolution-temporal.md

	Introduction
	Research question

	Literature
	AI based rendering acceleration techniques
	Asynchronous Reprojection
	Outpainting
	Combination of asynchronous reprojection and Outpainting

	Method
	Implementation
	The proof of concept

	Results
	Testing
	Examples
	Quality
	Speed

	Further Research
	Different techniques
	Improving this technique

	Conclusion
	Bibliography

